Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58.209
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Phys Chem B ; 128(15): 3631-3642, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38578072

RESUMO

Parallel cascade selection molecular dynamics (PaCS-MD) is an enhanced conformational sampling method conducted as a "repetition of time leaps in parallel worlds", comprising cycles of multiple molecular dynamics (MD) simulations performed in parallel and selection of the initial structures of MDs for the next cycle. We developed PaCS-Toolkit, an optimized software utility enabling the use of different MD software and trajectory analysis tools to facilitate the execution of the PaCS-MD simulation and analyze the obtained trajectories, including the preparation for the subsequent construction of the Markov state model. PaCS-Toolkit is coded with Python, is compatible with various computing environments, and allows for easy customization by editing the configuration file and specifying the MD software and analysis tools to be used. We present the software design of PaCS-Toolkit and demonstrate applications of PaCS-MD variations: original targeted PaCS-MD to peptide folding; rmsdPaCS-MD to protein domain motion; and dissociation PaCS-MD to ligand dissociation from adenosine A2A receptor.


Assuntos
Proteínas de Transporte , Simulação de Dinâmica Molecular , Conformação Proteica , Software , Domínios Proteicos
2.
Biochim Biophys Acta Gen Subj ; 1868(6): 130613, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593934

RESUMO

BACKGROUND: Serum albumin is the most abundant protein in the Mammalia blood plasma at where plays a decisive role in the transport wide variety of hydrophobic ligands. BSA undergoes oxidative modifications like the carbonylation by the reactive carbonyl species (RCSs) 4-hydroxy-2-nonenal (HNE), 4 hydroxy-2-hexenal (HHE), malondialdehyde (MDA) and 4-oxo-2-nonenal (ONE), among others. The structural and functional changes induced by protein carbonylation have been associated with the advancement of neurodegenerative, cardiovascular, metabolic and cancer diseases. METHODS: To elucidate structural effects of protein carbonylation with RCSs on BSA, parameters for six new non-standard amino acids were designated and molecular dynamics simulations of its mono­carbonylated-BSA systems were conducted in the AMBER force field. Trajectories were evaluated by RMSD, RMSF, PCA, RoG and SASA analysis. RESULTS: An increase in the conformational instability for all proteins modified with local changes were observed, without significant changes on the BSA global three-dimensional folding. A more relaxed compaction level and major solvent accessible surface area for modified systems was found. Four regions of high molecular fluctuation were identified in all modified systems, being the subdomains IA and IIIB those with the most remarkable local conformational changes. Regarding essential modes of domain movements, it was evidenced that the most representatives were those related to IA subdomain, while IIIB subdomain presented discrete changes. CONCLUSIONS: RCSs induces local structural changes on mono­carbonylated BSA. Also, this study extends our knowledge on how carbonylation by RCSs induce structural effects on proteins.


Assuntos
Aldeídos , Peroxidação de Lipídeos , Simulação de Dinâmica Molecular , Carbonilação Proteica , Soroalbumina Bovina , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Animais , Aldeídos/química , Aldeídos/metabolismo , Bovinos , Malondialdeído/metabolismo , Malondialdeído/química , Conformação Proteica
3.
Biophys Chem ; 309: 107232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593533

RESUMO

ATP-hydrolysis-associated conformational change of the ß-subunit during the rotation of F1-ATPase (F1) has been discussed using cryo-electron microscopy (cryo-EM). Since it is worthwhile to further investigate the conformation of ATP at the catalytic subunit through an alternative approach, the structure of ATP bound to the F1ß-subunit monomer (ß) was analyzed by solid-state NMR. The adenosine conformation of ATP-ß was similar to that of ATP analog in F1 crystal structures. 31P chemical shift analysis showed that the Pα and Pß conformations of ATP-ß are gauche-trans and trans-trans, respectively. The triphosphate chain is more extended in ATP-ß than in ATP analog in F1 crystals. This appears to be in the state just before ATP hydrolysis. Furthermore, the ATP-ß conformation is known to be more closed than the closed form in F1 crystal structures. In view of the cryo-EM results, ATP-ß would be a model of the most closed ß-subunit with ATP ready for hydrolysis in the hydrolysis stroke of the F1 rotation.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Hidrólise , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Domínio Catalítico , Conformação Proteica
4.
Biochem Soc Trans ; 52(2): 911-922, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629718

RESUMO

To date, there is no general physical model of the mechanism by which unfolded polypeptide chains with different properties are imported into the mitochondria. At the molecular level, it is still unclear how transit polypeptides approach, are captured by the protein translocation machinery in the outer mitochondrial membrane, and how they subsequently cross the entropic barrier of a protein translocation pore to enter the intermembrane space. This deficiency has been due to the lack of detailed structural and dynamic information about the membrane pores. In this review, we focus on the recently determined sub-nanometer cryo-EM structures and our current knowledge of the dynamics of the mitochondrial two-pore outer membrane protein translocation machinery (TOM core complex), which provide a starting point for addressing the above questions. Of particular interest are recent discoveries showing that the TOM core complex can act as a mechanosensor, where the pores close as a result of interaction with membrane-proximal structures. We highlight unusual and new correlations between the structural elements of the TOM complexes and their dynamic behavior in the membrane environment.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transporte Proteico , Microscopia Crioeletrônica/métodos , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Modelos Moleculares , Conformação Proteica , Animais
5.
Sci Rep ; 14(1): 9364, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654065

RESUMO

The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.


Assuntos
Domínio Catalítico , Cistationina gama-Liase , Sulfeto de Hidrogênio , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimologia , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/química , Cristalografia por Raios X , Especificidade por Substrato , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Modelos Moleculares , Cisteína/metabolismo , Cisteína/química , Conformação Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Homocisteína/metabolismo , Homocisteína/química , Catálise
6.
Sci Adv ; 10(13): eadk7201, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536910

RESUMO

Enzymes populate ensembles of structures necessary for catalysis that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography at an x-ray free electron laser to observe catalysis in a designed mutant isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations, and formation of the thioimidate intermediate selects for catalytically competent substates. The influence of cysteine ionization on the ICH ensemble is validated by determining structures of the enzyme at multiple pH values. Large molecular dynamics simulations in crystallo and time-resolved electron density maps show that Asp17 ionizes during catalysis and causes conformational changes that propagate across the dimer, permitting water to enter the active site for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Cristalografia por Raios X , Proteínas/química , Catálise , Conformação Proteica , Hidrolases
7.
Biomolecules ; 14(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540703

RESUMO

Glycosylation, a prevalent post-translational modification, plays a pivotal role in regulating intricate cellular processes by covalently attaching glycans to macromolecules. Dysregulated glycosylation is linked to a spectrum of diseases, encompassing cancer, neurodegenerative disorders, congenital disorders, infections, and inflammation. This review delves into the intricate interplay between glycosylation and protein conformation, with a specific focus on the profound impact of N-glycans on the selection of distinct protein conformations characterized by distinct interactomes-namely, protein assemblies-under normal and pathological conditions across various diseases. We begin by examining the spike protein of the SARS virus, illustrating how N-glycans regulate the infectivity of pathogenic agents. Subsequently, we utilize the prion protein and the chaperone glucose-regulated protein 94 as examples, exploring instances where N-glycosylation transforms physiological protein structures into disease-associated forms. Unraveling these connections provides valuable insights into potential therapeutic avenues and a deeper comprehension of the molecular intricacies that underlie disease conditions. This exploration of glycosylation's influence on protein conformation effectively bridges the gap between the glycome and disease, offering a comprehensive perspective on the therapeutic implications of targeting conformational mutants and their pathologic assemblies in various diseases. The goal is to unravel the nuances of these post-translational modifications, shedding light on how they contribute to the intricate interplay between protein conformation, assembly, and disease.


Assuntos
Príons , Processamento de Proteína Pós-Traducional , Glicosilação , Polissacarídeos/química , Conformação Proteica , Príons/metabolismo
8.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540742

RESUMO

Recently, several ATP-binding cassette (ABC) importers have been found to adopt the typical fold of type IV ABC exporters. Presumably, these importers would function under the transport scheme of "alternating access" like those exporters, cycling through inward-open, occluded, and outward-open conformations. Understanding how the exporter-like importers move substrates in the opposite direction requires structural studies on all the major conformations. To shed light on this, here we report the structure of yersiniabactin importer YbtPQ from uropathogenic Escherichia coli in the occluded conformation trapped by ADP-vanadate (ADP-Vi) at a 3.1 Å resolution determined by cryo-electron microscopy. The structure shows unusual local rearrangements in multiple helices and loops in its transmembrane domains (TMDs). In addition, the dimerization of the nucleotide-binding domains (NBDs) promoted by the vanadate trapping is highlighted by the "screwdriver" action at one of the two hinge points. These structural observations are rare and thus provide valuable information to understand the structural plasticity of the exporter-like ABC importers.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Vanadatos , Conformação Proteica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Trifosfato de Adenosina
9.
Biochemistry ; 63(7): 939-951, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507812

RESUMO

MshA is a GT-B glycosyltransferase catalyzing the first step in the biosynthesis of mycothiol. While many GT-B enzymes undergo an open-to-closed transition, MshA is unique because its 97° rotation is beyond the usual range of 10-25°. Molecular dynamics (MD) simulations were carried out for MshA in both ligand bound and unbound states to investigate the effect of ligand binding on localized protein dynamics and its conformational free energy landscape. Simulations showed that both the unliganded "opened" and liganded "closed" forms of the enzyme sample a wide degree of dihedral angles and interdomain distances with relatively low overlapping populations. Calculation of the free energy surface using replica exchange MD for the apo "opened" and an artificial generated apo "closed" structure revealed overlaps in the geometries sampled, allowing calculation of a barrier of 2 kcal/mol for the open-to-closed transition in the absence of ligands. MD simulations of fully liganded MshA revealed a smaller sampling of the dihedral angles. The localized protein fluctuation changes suggest that UDP-GlcNAc binding activates the motions of loops in the 1-l-myo-inositol-1-phosphate (I1P)-binding site despite little change in the interactions with UDP-GlcNAc. Circular dichroism, intrinsic fluorescence spectroscopy, and mutagenesis studies were used to confirm the ligand-induced structural changes in MshA. The results support a proposed mechanism where UDP-GlcNAc binds with rigid interactions to the C-terminal domain of MshA and activates flexible loops in the N-terminal domain for binding and positioning of I1P. This model can be used for future structure-based drug development of inhibitors of the mycothiol biosynthetic pathway.


Assuntos
Corynebacterium glutamicum , Cisteína , Glicopeptídeos , Glicosiltransferases , Inositol , Glicosiltransferases/metabolismo , Ligantes , Fosfatos de Inositol/metabolismo , Difosfato de Uridina/metabolismo , Conformação Proteica , Simulação de Dinâmica Molecular
10.
J Chem Theory Comput ; 20(7): 2689-2695, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547871

RESUMO

Mapping the ensemble of protein conformations that contribute to function and can be targeted by small molecule drugs remains an outstanding challenge. Here, we explore the use of variational autoencoders for reducing the challenge of dimensionality in the protein structure ensemble generation problem. We convert high-dimensional protein structural data into a continuous, low-dimensional representation, carry out a search in this space guided by a structure quality metric, and then use RoseTTAFold guided by the sampled structural information to generate 3D structures. We use this approach to generate ensembles for the cancer relevant protein K-Ras, train the VAE on a subset of the available K-Ras crystal structures and MD simulation snapshots, and assess the extent of sampling close to crystal structures withheld from training. We find that our latent space sampling procedure rapidly generates ensembles with high structural quality and is able to sample within 1 Å of held-out crystal structures, with a consistency higher than that of MD simulation or AlphaFold2 prediction. The sampled structures sufficiently recapitulate the cryptic pockets in the held-out K-Ras structures to allow for small molecule docking.


Assuntos
Proteínas , Proteínas/química , Conformação Proteica , Simulação por Computador
11.
Science ; 383(6689): eadj4591, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513023

RESUMO

Brassinosteroids are steroidal phytohormones that regulate plant development and physiology, including adaptation to environmental stresses. Brassinosteroids are synthesized in the cell interior but bind receptors at the cell surface, necessitating a yet to be identified export mechanism. Here, we show that a member of the ATP-binding cassette (ABC) transporter superfamily, ABCB19, functions as a brassinosteroid exporter. We present its structure in both the substrate-unbound and the brassinosteroid-bound states. Bioactive brassinosteroids are potent activators of ABCB19 ATP hydrolysis activity, and transport assays showed that ABCB19 transports brassinosteroids. In Arabidopsis thaliana, ABCB19 and its close homolog, ABCB1, positively regulate brassinosteroid responses. Our results uncover an elusive export mechanism for bioactive brassinosteroids that is tightly coordinated with brassinosteroid signaling.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Brassinosteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Conformação Proteica
12.
J Chem Theory Comput ; 20(5): 2273-2283, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427574

RESUMO

Coarse-grained (CG) level molecular dynamics simulations are routinely used to study various biomolecular processes. The Martini force field is currently the most widely adopted parameter set for such simulations. The functional form of this and several other CG force fields enforces secondary protein structure support by employing a variety of harmonic potentials or restraints that favor the protein's native conformation. We propose a straightforward method to calculate the energetic consequences of transitions between predefined conformational states in systems in which multiple factors can affect protein conformational equilibria. This method is designed for use within the Martini force field and involves imposing conformational transitions by linking a Martini-inherent elastic network to the coupling parameter λ. We demonstrate the applicability of our method using the example of five biomolecular systems that undergo experimentally characterized conformational transitions between well-defined structures (Staphylococcal nuclease, C-terminal segment of surfactant protein B, LAH4 peptide, and ß2-adrenergic receptor) as well as between folded and unfolded states (GCN4 leucine zipper protein). The results show that the relative free energy changes associated with protein conformational transitions, which are affected by various factors, such as pH, mutations, solvent, and lipid membrane composition, are correctly reproduced. The proposed method may be a valuable tool for understanding how different conditions and modifications affect conformational equilibria in proteins.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Conformação Proteica , Proteínas/química , Peptídeos , Solventes/química , Termodinâmica
13.
Proc Natl Acad Sci U S A ; 121(11): e2314199121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451940

RESUMO

Proton-powered c-ring rotation in mitochondrial ATP synthase is crucial to convert the transmembrane protonmotive force into torque to drive the synthesis of adenosine triphosphate (ATP). Capitalizing on recent cryo-EM structures, we aim at a structural and energetic understanding of how functional directional rotation is achieved. We performed multi-microsecond atomistic simulations to determine the free energy profiles along the c-ring rotation angle before and after the arrival of a new proton. Our results reveal that rotation proceeds by dynamic sliding of the ring over the a-subunit surface, during which interactions with conserved polar residues stabilize distinct intermediates. Ordered water chains line up for a Grotthuss-type proton transfer in one of these intermediates. After proton transfer, a high barrier prevents backward rotation and an overall drop in free energy favors forward rotation, ensuring the directionality of c-ring rotation required for the thermodynamically disfavored ATP synthesis. The essential arginine of the a-subunit stabilizes the rotated configuration through a salt bridge with the c-ring. Overall, we describe a complete mechanism for the rotation step of the ATP synthase rotor, thereby illuminating a process critical to all life at atomic resolution.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Prótons , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Conformação Proteica , Trifosfato de Adenosina , Rotação , ATPases Translocadoras de Prótons/metabolismo
14.
Science ; 383(6688): 1215-1222, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484065

RESUMO

DNA replication is initiated at multiple loci to ensure timely duplication of eukaryotic genomes. Sister replication forks progress bidirectionally, and replication terminates when two convergent forks encounter one another. To investigate the coordination of replication forks, we developed a replication-associated in situ HiC method to capture chromatin interactions involving nascent DNA. We identify more than 2000 fountain-like structures of chromatin contacts in human and mouse genomes, indicative of coupling of DNA replication forks. Replication fork interaction not only occurs between sister forks but also involves forks from two distinct origins to predetermine replication termination. Termination-associated chromatin fountains are sensitive to replication stress and lead to coupled forks-associated genomic deletions in cancers. These findings reveal the spatial organization of DNA replication forks within the chromatin context.


Assuntos
Cromatina , Replicação do DNA , DNA , Genoma Humano , Animais , Humanos , Camundongos , Cromatina/química , DNA/química , DNA/genética , Conformação Proteica , Sequenciamento de Nucleotídeos em Larga Escala
15.
J Phys Chem Lett ; 15(11): 3206-3213, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38483510

RESUMO

The functionalities of proteins rely on protein conformational changes during many processes. Identification of the protein conformations and capturing transitions among different conformations are important but extremely challenging in both experiments and simulations. In this work, we develop a machine learning based approach to identify a reaction coordinate that accelerates the exploration of protein conformational changes in molecular simulations. We implement our approach to study the conformational changes of human NTHL1 during DNA repair. Our results identified three distinct conformations: open (stable), closed (unstable), and bundle (stable). The existence of the bundle conformation can rationalize recent experimental observations. Comparison with an NTHL1 mutant demonstrates that a closely packed cluster of positively charged residues in the linker could be a factor to search when screening for genetic abnormalities. Results will lead to a better modulation of the DNA repair pathway to protect against carcinogenesis.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Humanos , Proteínas/química , Conformação Proteica , Desoxirribonuclease (Dímero de Pirimidina)
16.
J Mol Biol ; 436(9): 168542, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492718

RESUMO

PrimPol is a human DNA primase-polymerase which restarts DNA synthesis beyond DNA lesions and non-B DNA structures blocking replication. Disfunction of PrimPol in cells leads to slowing of DNA replication rates in mitochondria and nucleus, accumulation of chromosome aberrations, cell cycle delay, and elevated sensitivity to DNA-damaging agents. A defective PrimPol has been suggested to be associated with the development of ophthalmic diseases, elevated mitochondrial toxicity of antiviral drugs and increased cell resistance to chemotherapy. Here, we describe a rare missense PrimPol variant V102A with altered biochemical properties identified in patients suffering from ovarian and cervical cancer. The Val102 to Ala substitution dramatically reduced both the primase and DNA polymerase activities of PrimPol as well as specifically decreased its ability to incorporate ribonucleotides. Structural analysis indicates that the V102A substitution can destabilize the hydrophobic pocket adjacent to the active site, affecting dNTP binding and catalysis.


Assuntos
DNA Primase , DNA Polimerase Dirigida por DNA , Enzimas Multifuncionais , Mutação de Sentido Incorreto , DNA Primase/metabolismo , DNA Primase/química , DNA Primase/genética , Humanos , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/química , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/química , Feminino , Replicação do DNA , Modelos Moleculares , Substituição de Aminoácidos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Conformação Proteica , Cristalografia por Raios X , Domínio Catalítico
17.
Database (Oxford) ; 20242024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38507044

RESUMO

The DisProt database is a resource containing manually curated data on experimentally validated intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) from the literature. Developed in 2005, its primary goal was to collect structural and functional information into proteins that lack a fixed three-dimensional structure. Today, DisProt has evolved into a major repository that not only collects experimental data but also contributes to our understanding of the IDPs/IDRs roles in various biological processes, such as autophagy or the life cycle mechanisms in viruses or their involvement in diseases (such as cancer and neurodevelopmental disorders). DisProt offers detailed information on the structural states of IDPs/IDRs, including state transitions, interactions and their functions, all provided as curated annotations. One of the central activities of DisProt is the meticulous curation of experimental data from the literature. For this reason, to ensure that every expert and volunteer curator possesses the requisite knowledge for data evaluation, collection and integration, training courses and curation materials are available. However, biocuration guidelines concur on the importance of developing robust guidelines that not only provide critical information about data consistency but also ensure data acquisition.This guideline aims to provide both biocurators and external users with best practices for manually curating IDPs and IDRs in DisProt. It describes every step of the literature curation process and provides use cases of IDP curation within DisProt. Database URL: https://disprot.org/.


Assuntos
Proteínas Intrinsicamente Desordenadas , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Bases de Dados Factuais
18.
Commun Biol ; 7(1): 298, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461354

RESUMO

Förster resonance energy transfer (FRET) is a widely-used and versatile technique for the structural characterization of biomolecules. Here, we introduce FRETpredict, an easy-to-use Python software to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses a rotamer library approach to describe the FRET probes covalently bound to the protein. The software efficiently and flexibly operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We provide access to rotamer libraries for many commonly used dyes and linkers and describe a general methodology to generate new rotamer libraries for FRET probes. We demonstrate the performance and accuracy of the software for different types of systems: a rigid peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict .


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas Intrinsicamente Desordenadas , Transferência Ressonante de Energia de Fluorescência/métodos , Software , Simulação de Dinâmica Molecular , Conformação Proteica
19.
Elife ; 122024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537148

RESUMO

Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named 'L' and 'R,' where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.


Assuntos
Trifosfato de Adenosina , Domínio Catalítico , Fosforilação , Conformação Proteica
20.
Protein Sci ; 33(4): e4955, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501487

RESUMO

Structure and functions of S100 proteins are regulated by two distinct calcium binding EF hand motifs. In this work, we used solution-state NMR spectroscopy to investigate the cooperativity between the two calcium binding sites and map the allosteric changes at the target binding site. To parse the contribution of the individual calcium binding events, variants of S100A12 were designed to selectively bind calcium to either the EF-I (N63A) or EF-II (E31A) loop, respectively. Detailed analysis of the backbone chemical shifts for wildtype protein and its mutants indicates that calcium binding to the canonical EF-II loop is the principal trigger for the conformational switch between 'closed' apo to the 'open' Ca2+ -bound conformation of the protein. Elimination of binding in S100-specific EF-I loop has limited impact on the calcium binding affinity of the EF-II loop and the concomitant structural rearrangement. In contrast, deletion of binding in the EF-II loop significantly attenuates calcium affinity in the EF-I loop and the structure adopts a 'closed' apo-like conformation. Analysis of experimental amide nitrogen (15 N) relaxation rates (R1 , R2 , and 15 N-{1 H} NOE) and molecular dynamics (MD) simulations demonstrate that the calcium bound state is relatively floppy with pico-nanosecond motions induced in functionally relevant domains responsible for target recognition such as the hinge domain and the C-terminal residues. Experimental relaxation studies combined with MD simulations show that while calcium binding in the EF-I loop alone does not induce significant motions in the polypeptide chain, EF-I regulates fluctuations in the polypeptide in the presence of bound calcium in the EF-II loop. These results offer novel insights into the dynamic regulation of target recognition by calcium binding and unravels the role of cooperativity between the two calcium binding events in S100A12.


Assuntos
Proteínas S100 , Proteína S100A12 , Proteínas S100/química , Proteína S100A12/metabolismo , Cálcio/metabolismo , Conformação Proteica , Proteínas de Ligação ao Cálcio/química , Motivos EF Hand , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA